Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Infect Control Hosp Epidemiol ; : 1-4, 2021 Dec 06.
Article in English | MEDLINE | ID: covidwho-2323989

ABSTRACT

To assess the burden of respiratory virus coinfections with severe acute respiratory coronavirus virus 2 (SARS-CoV-2), this study reviewed 4,818 specimens positive for SARS-CoV-2 and tested using respiratory virus multiplex testing. Coinfections with SARS-CoV-2 were uncommon (2.8%), with enterovirus or rhinovirus as the most prevalent target (88.1%). Respiratory virus coinfection with SARS-CoV-2 remains low 1 year into the coronavirus disease 2019 (COVID-19) pandemic.

2.
Diagn Microbiol Infect Dis ; 105(4): 115832, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2242965

ABSTRACT

We compared the performance of ID NOW™ COVID-19 assay nasal swabs with RT-PCR of nasopharyngeal swabs for SARS-CoV-2 in an outbreak setting, determining whether addition of RT-PCR of residual nasal swabs (rNS) (post ID NOW™ elution) would increase overall analytic sensitivity. Devices were placed at 2 long term and 1 acute care sites and 51 participants were recruited. Prospective paired nasopharyngeal and nasal samples were collected for RT-PCR and ID NOW™.  ID NOW™ had a positive and negative categorical agreement of 86% and 93% compared to RT-PCR of nasopharyngeal swabs. Sensitivity and specificity of the ID NOW™ was 86% and 100%, positive and negative predictive value was 100% and 95% (COVID-19 positivity rate: 8%). Addition of rNS RT-PCR increased the positive and negative categorical agreement to 93% and 97%. Based on these results, we propose an alternative workflow which includes complementary testing of rNS on a secondary assay.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , SARS-CoV-2/genetics , Clinical Laboratory Techniques/methods , COVID-19 Testing , Prospective Studies , Nasopharynx , Sensitivity and Specificity
3.
PLoS One ; 17(10): e0275815, 2022.
Article in English | MEDLINE | ID: covidwho-2079752

ABSTRACT

OBJECTIVES: The COVID-19 pandemic and ensuing public health emergency has emphasized the need to study SARS-CoV-2 pathogenesis. The human microbiome has been shown to regulate the host immune system and may influence host susceptibility to viral infection, as well as disease severity. Several studies have assessed whether compositional alterations in the nasopharyngeal microbiota are associated with SARS-CoV-2 infection. However, the results of these studies were varied, and many did not account for disease severity. This study aims to examine whether compositional differences in the nasopharyngeal microbiota are associated with SARS-CoV-2 infection status and disease severity. METHODS: We performed Nanopore full-length 16S rRNA sequencing on 194 nasopharyngeal swab specimens from hospitalized and community-dwelling SARS-CoV-2-infected and uninfected individuals. Sequence data analysis was performed using the BugSeq 16S analysis pipeline. RESULTS: We found significant beta (PERMANOVA p < 0.05), but not alpha (Kruskal-Wallis p > 0.05) diversity differences in the nasopharyngeal microbiota among our study groups. We identified several differentially abundant taxa associated with SARS-CoV-2 infection status and disease severity using ALDEx2. Finally, we observed a trend towards higher abundance of Enterobacteriaceae in specimens from hospitalized SARS-CoV-2-infected patients. CONCLUSIONS: This study identified several alterations in the nasopharyngeal microbiome associated with SARS-CoV-2 infection status and disease severity. Understanding the role of the microbiome in infection susceptibility and severity may open new avenues of research for disease prevention and treatment.


Subject(s)
COVID-19 , Microbiota , Humans , Nasopharynx , Pandemics/prevention & control , RNA, Ribosomal, 16S/genetics , SARS-CoV-2 , Severity of Illness Index
4.
Commun Biol ; 5(1): 151, 2022 02 22.
Article in English | MEDLINE | ID: covidwho-1708032

ABSTRACT

A large gap remains between sequencing a microbial community and characterizing all of the organisms inside of it. Here we develop a novel method to taxonomically bin metagenomic assemblies through alignment of contigs against a reference database. We show that this workflow, BugSplit, bins metagenome-assembled contigs to species with a 33% absolute improvement in F1-score when compared to alternative tools. We perform nanopore mNGS on patients with COVID-19, and using a reference database predating COVID-19, demonstrate that BugSplit's taxonomic binning enables sensitive and specific detection of a novel coronavirus not possible with other approaches. When applied to nanopore mNGS data from cases of Klebsiella pneumoniae and Neisseria gonorrhoeae infection, BugSplit's taxonomic binning accurately separates pathogen sequences from those of the host and microbiota, and unlocks the possibility of sequence typing, in silico serotyping, and antimicrobial resistance prediction of each organism within a sample. BugSplit is available at https://bugseq.com/academic .


Subject(s)
Algorithms , Bacteria/genetics , Computational Biology/methods , Metagenome/genetics , Metagenomics/methods , Nanopore Sequencing/methods , Bacteria/classification , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/virology , Humans , Internet , Pandemics/prevention & control , Reproducibility of Results , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/physiology
5.
PLoS One ; 16(11): e0259712, 2021.
Article in English | MEDLINE | ID: covidwho-1523436

ABSTRACT

OBJECTIVES: The COVID-19 pandemic has underscored the need for rapid novel diagnostic strategies. Metagenomic Next-Generation Sequencing (mNGS) may allow for the detection of pathogens that can be missed in targeted assays. The goal of this study was to assess the performance of nanopore-based Sequence-Independent Single Primer Amplification (SISPA) for the detection and characterization of SARS-CoV-2. METHODS: We performed mNGS on clinical samples and designed a diagnostic classifier that corrects for barcode crosstalk between specimens. Phylogenetic analysis was performed on genome assemblies. RESULTS: Our assay yielded 100% specificity overall and 95.2% sensitivity for specimens with a RT-PCR cycle threshold value less than 30. We assembled 10 complete, and one near-complete genomes from 20 specimens that were classified as positive by mNGS. Phylogenetic analysis revealed that 10/11 specimens from British Columbia had a closest relative to another British Columbian specimen. We found 100% concordance between phylogenetic lineage assignment and Variant of Concern (VOC) PCR results. Our assay was able to distinguish between the Alpha and Gamma variants, which was not possible with the current standard VOC PCR being used in British Columbia. CONCLUSIONS: This study supports future work examining the broader feasibility of nanopore mNGS as a diagnostic strategy for the detection and characterization of viral pathogens.


Subject(s)
COVID-19/diagnosis , Metagenome , Nanopore Sequencing/methods , Pandemics , SARS-CoV-2/isolation & purification , Humans , Sensitivity and Specificity
6.
Mayo Clin Proc ; 96(12): 3042-3052, 2021 12.
Article in English | MEDLINE | ID: covidwho-1415645

ABSTRACT

OBJECTIVE: To determine the incidence of influenza and noninfluenza respiratory viruses (NIRVs) pre-/post-implementation of public health measures aimed to decrease coronavirus disease 2019 (COVID-19) transmission using population-based surveillance data. We hypothesized that such measures could reduce the burden of respiratory viruses (RVs) transmitting via the same routes. PATIENTS AND METHODS: An interrupted time-series analysis of RV surveillance data in Alberta, Canada, from May 2017 to July 2020 was conducted. The burden of influenza and NIRVs before and after intervention initiation at week 11 was compared. The analysis was adjusted for seasonality, overdispersion, and autocorrelation. RESULTS: During the study period, an average of 708 and 4056 weekly respiratory multiplex molecular panels were conducted pre-/post-intervention, respectively. We found significant reductions in test positivity rates in the postintervention period for influenza (-94.3%; 95% CI, -93.8 to 97.4%; P<.001) and all NIRVs (-76.5%; 95% CI, -77.3 to -75.8%; P<.001) in the crude model, and -86.2% (95% CI, -91.5 to -77.4%: P<.001) and -75% (95% CI, -79.7 to -69.3%; P<.001), respectively, in the adjusted models. Subanalyses for individual viruses showed significant decreases in respiratory syncytial virus, human metapneumovirus, enterovirus/rhinovirus, and parainfluenza. For non-severe acute respiratory coronavirus 2 human coronaviruses, the decline was not statistically significant after adjustment (-22.3%; 95% CI, -49.3 to +19%, P=.246). CONCLUSION: The implementation of COVID-19 public health measures likely resulted in reduced transmission of common RVs. Although drastic lockdowns are unlikely to be required given widespread COVID-19 vaccination, targeted implementation of such measures can lower RV disease burden. Studies to evaluate relative contributions of individual interventions are warranted.


Subject(s)
COVID-19 , Communicable Disease Control , Disease Transmission, Infectious/prevention & control , Respiratory Tract Infections , Virus Diseases , Viruses , Adolescent , Adult , Aged , Alberta/epidemiology , COVID-19/epidemiology , COVID-19/prevention & control , Communicable Disease Control/methods , Communicable Disease Control/organization & administration , Communicable Disease Control/statistics & numerical data , Epidemiological Monitoring , Humans , Incidence , Infant, Newborn , Influenza, Human/epidemiology , Interrupted Time Series Analysis/statistics & numerical data , Public Health/methods , Public Health/statistics & numerical data , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/prevention & control , SARS-CoV-2 , Seasons , Virus Diseases/classification , Virus Diseases/epidemiology , Virus Diseases/prevention & control , Viruses/classification , Viruses/isolation & purification
7.
J Clin Virol ; 142: 104933, 2021 09.
Article in English | MEDLINE | ID: covidwho-1345391

ABSTRACT

BACKGROUND: COVID-19 seroprevalence studies use serum/plasma samples to detect SARS-CoV-2 IgG. Data supporting alternate specimen types and freeze-thaw antibody stability is lacking. The stability of IgG and other immunoglobulins in multiple blood sample types stored in differing conditions and multiple freeze-thaw cycles (FTCs) was evaluated. MATERIALS AND METHODS: Serum, plasma, and heparinized-plasma samples were collected from COVID-19 recovered individuals. Samples underwent testing for SARS-CoV-2 antibodies upon collection, after each of 10-12 FTCs, and storage at -70°C, -20°C, 4°C, and room-temperature for 10-12 days using four high-throughput commercial assays, two rapid-test cassettes, a manual ELISA, and a surrogate neutralization assay. RESULTS: All three specimen types were collected from 34 COVID-19 recovered seropositive individuals (≥21 days post-symptoms). Using the Architect and Liaison assays, a positive qualitative SARS-CoV-2 IgG result was detected daily up to 12 FTCs and up to 10 days of storage at different temperatures. An additional 25 plasma samples consistently demonstrated detection of SARS-CoV-2 antibodies daily after 12 FTCs and storage at -20°C using two rapid test cassette assays (SD Biosensor and Hangzhou All Test), manual (Beijing Wantai) and surrogate neutralization (GenScript) ELISAs, and two high-throughput assays (Roche Elecsys nucleocapsid and spike). IgM antibodies were less frequently detected by one of the rapid test cassette assays. CONCLUSIONS: Serum, plasma, and heparinized-plasma constitute reliable samples for SARS-CoV-2 antibody detection. In particular, the IgG response was stable and reliably detected after multiple FTCs and storage at common laboratory conditions. IgM detection was variable due to the labile nature of this antibody class.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Immunoglobulin G , Laboratories , Sensitivity and Specificity , Seroepidemiologic Studies
8.
Virol J ; 18(1): 13, 2021 01 09.
Article in English | MEDLINE | ID: covidwho-1067245

ABSTRACT

BACKGROUND: COVID-19 is diagnosed via detection of SARS-CoV-2 RNA using real time reverse-transcriptase polymerase chain reaction (rtRT-PCR). Performance of many SARS-CoV-2 rtRT-PCR assays is not entirely known due to the lack of a gold standard. We sought to evaluate the false negative rate (FNR) and sensitivity of our laboratory-developed SARS-CoV-2 rtRT-PCR targeting the envelope (E) and RNA-dependent RNA-polymerase (RdRp) genes. METHODS: SARS-CoV-2 rtRT-PCR results at the Public Health Laboratory (Alberta, Canada) from January 21 to April 18, 2020 were reviewed to identify patients with an initial negative rtRT-PCR followed by a positive result on repeat testing within 14 days (defined as discordant results). Negative samples from these discordant specimens were re-tested using three alternate rtRT-PCR assays (targeting the E gene and N1/N2 regions of the nucleocapsid genes) to assess for false negative (FN) results. RESULTS: During the time period specified, 95,919 patients (100,001 samples) were tested for SARS-CoV-2. Of these, 49 patients were found to have discordant results including 49 positive and 52 negative swabs. Repeat testing of 52 negative swabs found five FNs (from five separate patients). Assuming 100% specificity of the diagnostic assay, the FNR and sensitivity in this group of patients with discordant testing was 9.3% (95% CI 1.5-17.0%) and 90.7% (95% CI 82.6-98.9%) respectively. CONCLUSIONS: Studies to understand the FNR of routinely used assays are important to confirm adequate clinical performance. In this study, most FN results were due to low amounts of SARS-CoV-2 virus concentrations in patients with multiple specimens collected during different stages of infection. Post-test clinical evaluation of each patient is advised to ensure that rtRT-PCR results are not the only factor in excluding COVID-19.


Subject(s)
COVID-19 Nucleic Acid Testing , COVID-19/diagnosis , Real-Time Polymerase Chain Reaction , SARS-CoV-2/isolation & purification , Adult , Aged , Aged, 80 and over , COVID-19/virology , COVID-19 Nucleic Acid Testing/statistics & numerical data , Canada , False Negative Reactions , Female , Humans , Male , Middle Aged , Molecular Diagnostic Techniques/statistics & numerical data , Sensitivity and Specificity
9.
J Clin Microbiol ; 58(10)2020 09 22.
Article in English | MEDLINE | ID: covidwho-646227

ABSTRACT

Coronavirus disease (COVID) serological tests are essential to determine the overall seroprevalence of a population and to facilitate exposure estimates within that population. We performed a head-to-head assessment of enzyme immunoassays (EIAs) and point-of-care lateral flow assays (POCTs) to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies. Demographics, symptoms, comorbidities, treatment, and mortality of patients whose sera were used were also reviewed. Six EIAs (Abbott, Affinity, Bio-Rad, DiaSorin, Euroimmun, and Roche) and six POCTs (BTNX, Biolidics, Deep Blue, Genrui, Getein BioTech, and Innovita) were evaluated for the detection of SARS-CoV-2 antibodies in known COVID-19-infected individuals. Sensitivity of EIAs ranged from 50 to 100%, with only four assays having overall sensitivities of >95% after 21 days after symptom onset. Notably, cross-reactivity with other respiratory viruses (parainfluenza virus [PIV-4] [n = 5], human metapneumovirus [hMPV] [n = 3], rhinovirus/enterovirus [n = 1], CoV-229E [n = 2], CoV-NL63 [n = 2], and CoV-OC43 [n = 2]) was observed; however, overall specificity of EIAs was good (92 to 100%; all but one assay had specificity above 95%). POCTs were 0 to 100% sensitive >21 days after onset, with specificity ranging from 96 to 100%. However, many POCTs had faint banding and were often difficult to interpret. Serology assays can detect SARS-CoV-2 antibodies as early as 10 days after symptom onset. Serology assays vary in their sensitivity based on the marker (IgA/IgM versus IgG versus total) and by manufacturer; however, overall only 4 EIAs and 4 POCTs had sensitivities of >95% >21 days after symptom onset. Cross-reactivity with other seasonal coronaviruses is of concern. Serology assays should not be used for the diagnosis of acute infection but rather in carefully designed serosurveys to facilitate understanding of seroprevalence in a population and to identify previous exposure to SARS-CoV-2.


Subject(s)
Antibodies, Viral/blood , Betacoronavirus/isolation & purification , Adult , Aged , Aged, 80 and over , Betacoronavirus/immunology , COVID-19 Testing , Clinical Laboratory Techniques , Coronavirus Infections/blood , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Cross Reactions , Female , Humans , Immunoenzyme Techniques , Male , Middle Aged , Point-of-Care Systems , SARS-CoV-2 , Sensitivity and Specificity , Seroepidemiologic Studies , Serologic Tests , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL